Interferon-gamma-induced membrane PAF-receptor expression confers tumor cell susceptibility to NK perforin-dependent lysis.
نویسندگان
چکیده
Perforin is known to display a membranolytic activity on tumor cells. Nevertheless, perforin release during natural killer (NK)-cell activation is not sufficient to induce membrane target-cell damage. On the basis of the ability of perforin to interact with phospholipids containing a choline phosphate headgroup, we identify the platelet-activating factor (PAF) and its membrane receptor as crucial components in tumor cell killing activity of human resting NK cells. We demonstrate for the first time that upon activation, naive NK cells release the choline phosphate-containing lysolipid PAF, which binds to perforin and acts as an agonist on perforin-induced membrane damage. PAF is known to incorporate cell membranes using a specific receptor. Here we show that interferon-gamma (IFN-gamma) secreted from activated NK cells ends in PAF-receptor expression on perforin-sensitive K562 cells but not on perforin-resistant Daudi cells. In order to prove the capacity of PAF to interact simultaneously with its membrane PAF receptor and with perforin, we successfully co-purified the 3 components in the presence of bridging PAF molecules. The functional activity of this complex was further examined. The aim was to determine whether membrane PAF-receptor expression on tumor cells, driven to express this receptor, could render them sensitive to the perforin lytic pathway. The results confirmed that transfection of the PAF-receptor complementary DNA into major histocompatibility complex class I and Fas-receptor negative tumor cells restored susceptibility to naive NK cells and perforin attack. Failure of IFN-gamma to induce membrane PAF receptor constitutes the first described mechanism for tumor cells to resist the perforin lytic pathway.
منابع مشابه
Interferon-γ-induced activation of JAK1 and JAK2 suppresses tumor cell susceptibility to NK cells through upregulation of PD-L1 expression
Inhibition of JAK1 or JAK2 in human tumor cells was previously shown to increase susceptibility of these cells to NK cell lysis. In the present study, we examined the cellular mechanisms that mediate this effect in hematopoietic tumor cell lines and primary tumor cells. Incubation of tumor cells with supernatant from activated NK cells or interferon-gamma (IFNγ)-induced activation of pSTAT1 and...
متن کاملThe Influence of Perforin Expression on the Sensitivity of LAK/NK Killing Against Various Tumor Target Cells
Background: Perforin is known to be important in cytolytic activity mediated by natural killer (NK) cells. Objective: To study the relationship between the efficiency of NK and lymphokine-activated killer (LAK) cells activity, and the expression of perforin and HLA class I molecules. Methods: LAK cells were generated by in vitro culturing of human peripheral blood lymphocytes (PBLs) in the ...
متن کاملCutting edge: tumor rejection mediated by NKG2D receptor-ligand interaction is dependent upon perforin.
We have investigated the primary immunity generated in vivo by MHC class I-deficient and -competent tumor cell lines that expressed the NKG2D ligand retinoic acid early inducible-1 (Rae-1) beta. Rae-1beta expression on class I-deficient RMA-S lymphoma cells enhanced primary NK cell-mediated tumor rejection in vivo, whereas RMA-Rae-1beta tumor cells were rejected by a combination of NK cells and...
متن کاملSUSCEPTIBILITY OF HUMAN WM MELANOMA CELL LINES TO NK AND LAK CYTOTOXICITY AND THEIR RELEVANCE TO THE LEVEL OF MHC CLASS I AND ICAM-l ANTIGEN EXPRESSION
The effect of natural killer (NK) cells and lymphokine activated killer ( LAK) cells was studied on a group of human melanoma cell lines. Peripheral blood from healthy volunteers was utilized as a fresh source of natural killer cells and rhI L-2 for producing LAK cells. The cytotoxicity of effector cells was quantified using a 4 hour SI determining the density of antigen expression on tumor...
متن کاملImpaired NK cytolytic activity and enhanced tumor growth in NK lytic-associated molecule-deficient mice.
NK lytic-associated molecule (NKLAM) is a protein involved in the cytolytic function of NK cells. It is weakly expressed in resting NK cells but upon target cell stimulation or after incubation with cytokines that enhance NK killing, NKLAM mRNA levels increase and protein is synthesized and is targeted to cytoplasmic granule membranes. We have previously shown that NKLAM plays a role in perfori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 95 7 شماره
صفحات -
تاریخ انتشار 2000